纳米技术能制作治病机器人吗?

美国著名的科幻小说作家艾萨克·阿西莫夫1965年曾经写过一本科幻小说,名字叫《奇妙的航程》。小说中幻想一些科学家把一艘由人操控的潜艇微缩后,让潜艇进入人体进行了一段奇妙的旅行。今天,我们还是没能发明微缩术,可是制造出微小的机器进入人体已经成为科学家研究的目标。

科学家设想这样制造出来的纳米机器人可以在病人的血流中前进,追捕患病细胞,穿透其细胞膜并释放精确定量的药物,随时清除人体中的一切有害物质,激活细胞能量,使人不仅仅保持健康,而且延长寿命。这种机器人还能够从动脉壁上清除脂肪等沉积物。这不仅会提高动脉壁的弹性,还会使通过动脉的血液流动状况得到改善。血栓会在人体的要害部位阻塞血流,导致重要脏器的损伤。纳米机器人可以在这些血块未堵塞血管、尚处在流动中时,把它们打成小碎片,使其对机体的损伤大大降低。纳米机器人还可用来清除创伤和烧伤。它们的大小使它们在清除切割伤等伤口附近的垃圾和异物时变得很有用,在烧伤时也是这样。它们可以从事比常规技术更复杂的工作,造成的损伤却非常的小。纳米机器人可以用来清除人体内的其他微生物。它们很适宜清除一些微小的寄生虫、修复关节、加强骨组织、去除疤痕组织等,看来它真的是神通广大。此外,这种微小的机器人还可以时刻不停地监测我们身体里的各种信息,就好像我们身边始终跟着一个医生气样。

艾滋病是目前医学上的难题,可在未来的某一天,医学科学家把它交给了一种纳米机器人,让这些纳米机器人进入人体的细胞里面,发起全方位的攻击,彻底清除这万恶的病毒,挽救人的生命。人们把它称为“神医”。原因挺简单,医生并没给病人动手术、开药方,而是把这种机器人注入到病人的血液中。这个微型机器人不断在病人的血液中游走,及时地捕捉病毒。结果病人很快痊愈,称纳米机器人为“神医”真是当之无愧。

试想不久的将来一位高级工程师患了脑血栓。医生采用了一种独特的治疗方法:他把一根极其纤细的微型导管先插入病人大腿,然后将其慢慢引向脑血管。微型导管上的诊断激光束如同一位高明而又细心的大夫沿着脑血管仔细地搜索检查。忽然间,诊断激光束发现了在前进的道路上有脑血管瘤等堵塞物,此时微型导管上的气囊立刻自动膨胀起来,迅速将导管固定住,让治疗激光束立刻对堵塞物进行“轰击”清除。治疗效果自然是令人满意的,这也是目前普通药物无法企及的。

以上所描述的情景已不再是什么幻想,而是纳米技术在医学领域中即将成为现实的事情。目前,医学专家正对微型机器人在医疗领域的应用全力攻关。20世纪。90年代初,当用硅制作的微型马达出现时,各国的医学专家就考虑到它的各种应用。前些年,直径约0.2毫米的微型静电马达乃至直径更小的超微型静电马达就已研制成功,使得用纳米机器人来治疗各种疾病的技术日臻成熟。美国贝尔实验室研制成功的一种微型气轮机,是一种带有旋转叶片的电机。它的体积非常小,看上去只是一个小黑点,只有借助显微镜才能看清它。但由于超微电机实在太小,以至于滞留于其气轮叶片间的物质分子也重到足以引起强大的阻力,从而减缓电机的转速。即使用一个注射器针头轻轻一吹,它也能以每分钟24000转的速度快速旋转起来。

纳米技术与生物仿生学及医学的融合交叉,已取得了一些辉煌的成果,如分子马达的发明,用DNA的密码原理开始研制智能纳米机器人。

纳米技术与生物学的结合将对21世纪的人类生活产生不可估量的影响。想二想近10年来信息技术的迅速发展,生物科学技术中对基因的认识,产生了转基因生物技术,可以治疗顽症,也可以创造出自然界不存在的生物。信息科学技术使人们可以坐在家中便知天下大事,因特网如同幻梦般地改变人类的生活方式,就不难想像纳米技术与生物学的结合将怎样改变现代医学和农业的面貌。我们的生活方式正因纳米技术向生物学的渗透而面临着巨大的变革。

“纳米技术有着不可限量的潜力,它甚至会超过计算机或基因技术,成为2l世纪的决定性技术。”这是某位著名分析家所说的话。此话的确道出了新世纪科学发展的一个重要趋势。

仿生学是根据生物学原理而进行的,它是生物物理学的一个重要分支。物理学家总是模仿生物的行为制造各种灵巧的机器。飞机是模仿鸟类飞行的产物,照相机是眼睛的仿制品,智能机器人更是当前科学家热衷发展的技术。

当纳米技术朝仿生学渗透时,其基本内容就是研制微型机器人,制造一些仅由数千个原子组成的机器人,使它们可以在细胞水平的微小空间内开展工作。

微型机器人的设计是基于分子水平的生物学原理。事实上,细胞本身就是一个活生生的纳米机器,细胞中的每一个酶分子也就是一个个活生生的纳米机器人。

蛋白分子构象的变化使酶分子中不同结构域的动作就像微型机器人在移动和重新安排有关分子中的原子排列顺序。细胞中的很多结构单元都是执行某种功能的微型机器:核糖体是按照基因密码的指令安排氨基酸顺序制造蛋白质分子的加工器;加工好的蛋白质可以按照信号肽的指令由膜囊泡运送到确定的部位发挥功能;完成了功能使命的蛋白质还会被贴上标签,送去水解成氨基酸以备再用。细胞的生命过程就是一批又一批的功能相关的蛋白质组群不断替换、更新行使功能的过程,这些生命过程所需的一切能量来自太阳。植物叶子中的叶绿体是把太阳能转化成化学能从而制造粮食的加工厂;线粒体是把能量物质中储存的太阳能释放出来从而制造能量ATP(直接为生命提供能量的分子)的车间;我们每人每天都要消耗相当多的ATP分子,来维持生命活动和繁忙的工作。细铲,8中发生的所有这一切都是按照DNA分子中的基因密码序列的指令井然有序地进行的。

瑞典已经开始制造微型医用机器人。据报道,这种机器人由多层聚合物和黄金制成,外表类似人的手臂,其肘部和腕部很灵活,有2~4个手指、实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段。科学家希望这种微型医用机器人能在血液、尿液和细胞介质中工作,捕捉和移动单个细胞,成为微二型手术器械。

纳米拒技术与仿生学的结合可以使生物物理学家仿照生命过程的各个环节制造出各种各样的微型机器人。可以预料,直接利用太阳能制造食物的机器很可能将在21世纪出现;利用纳米技术可以制造在血管中游走的机器人,以便专门清除血管壁上沉积物,减少心血管疾病的发病率;利用纳米技术还可以制造能进入组织间隙专门清除癌细胞的机器人,所有这些都已不再天立夜谭。

在小型化方面,科学家不仅造出了像微生物那样大的精巧装置,而且还使这些装置能够运动。

美国国家航空航天局资助的研究人员最近启动了一个项目,目的是;把这个纳米机器人真的变为现实。如果项目成功,这艘由科学家开发的“船”——称为“纳米微粒”或“纳米胶囊”——就能使另一个科幻故事成真:载人火星探测以及其他的长期太差生活。

当研究人员的主要注意力都集中在太空应用时,纳米微粒也拥有了在医学(特别是治疗癌症)等领域的潜在价值。把治疗肿瘤的药物直接导人癌细胞的迫切需要已经在医学领域掀起了对纳米微粒的广泛兴趣,因为这能避免化疗的副作用。这些纳米微粒的作用是引入了一种新的治疗方法——实际上是进入一个个单独的细胞……并将其修复,如果细胞的损害过于严重,就干脆杀死这些细胞。

他们研制的项目将集中在与癌症有关的问题上——尤其在飞往月球或火星的旅途中,飞船脱离了围绕地球的由巨大磁场构成的保护伞,宇航员在太空中会受到高剂量辐射,这可能引发癌症。

甚至在宇宙飞船上使用的防辐射的先进材料也不能将宇航员与太空中的高能辐射完全隔离开来;这些高能宇宙射线像极细小的子弹一样能穿透宇航员的身体,处于其飞行轨迹上的分子会被击碎。一旦细胞内DNA因辐射而损坏,细胞就不能正常地行使功能,有时会癌变。这是一个重要的问题,如果人类要在太空中生活,我们就必须知道如何更好地使他们免受辐射之害。

因为独立地防护也许并不能解决问题,粒子学家必须找到某种使宇航员自身能抵抗辐射危害的方法。纳米微粒是第一流的解决方案。这些运药小船的长度仅有几百纳米,比细菌小得多,甚至比可见光的波长还要短。用一只皮下注射针头进行的简单注射能把成千乃至上百万的这种小船注入人体血流中。一旦进入血流,纳米微粒能比人体内的普通细胞信号系统更有效地找到被辐射损坏的细胞。

数以万亿计的人体细胞靠外层膜上的复杂分子进行相互识别和通信。这些分子就像化学“旗帜”一样与其他细胞通信,在控制血流中的分子(如荷尔蒙)能否通过时,它们又起着化学闸门的作用。

细胞被辐射损坏时,它们会在特定种类的蛋白质上产生一个标记,这标记会体现在细胞的外表面上。细胞就这样告诉其他细胞说:“嗨,我受伤了。”通过向纳米微粒的外表面植入可以识别细胞标记的分子,科学家能够为纳米微粒“制定任务”使其找出那些受辐射损害的细胞。

如果辐射造成的损伤很严重,纳米微粒会进入受损细胞并释放一种酶使细胞“自动破坏DNA序列”。或者,它们能释放DNA修复酶以尝试修理细胞,使其恢复正常功能。

如果这种纳米微粒研究成功,那么人类在太空中就不怕各种射线的辐射了,其时,移民太空将成为可能。

什么是微型机器人?

微机械学应运而生

——20世纪末微型机器人的诞生科学家预言,20世纪最伟大的科学领域是微世界,比针尖还小的微型机械开创了崭新的科学领域。微型机器人,已成为人类骄子。

多大的机器人算微型机器人?在20世纪80年代,日本东京大学教授林辉的定义是:1毫米至10毫米为小型机械,10微米至1毫米为微型机械,10纳米至10微米为超微型机械,统称为微型机械。微型机器人的体积,可以做到微米级甚至亚微米级,重量轻至纳克,加工精度达微米、纳米级。

医用机器人(什么是微型医用机器人)

日本一家公司,已经用微型零件安装了一辆能开动的微型汽车,它的大小相当于一颗米粒,静电马达的直径只有1-2个微米。这家公司,还制造了一种能开动的微型车床,大小只有普通车床的万分之一;公司制造的人工智能尺蠖,直径只有5.5毫米。据称,不久的将来,这种人工智能尺蠖,将有可能在核电站的弯弯曲曲的管道中爬行,去寻找管道的裂缝。

德国微型技术研究所的物理学家沃尔夫冈·埃菲尔德,已研制出一架双引擎直升机,重量不到0.5克,能向空中升起130毫米。它的高性能微型马达,功率为1瓦,每分钟转速可达10万转,个头却只有削尖的铅笔尖那么大。这种尺寸只有黄蜂大小的直升机,虽然离实用还有很大距离,但是它令人信服地表明,极其微小的微型马达,最终将能用来驱动电子显示器、手表、微型计算机、激光扫描器和微型外科手术器械等。

要做成微型机器人,原先的工业技术已完全不适用。构成微型机械必须有非常小的零件,制造那样的零件,要求材料、加工方法和组装,都必须开发全新的技术。美国得克萨斯仪器公司利用制造硅片的蚀刻工艺,来制造尺寸极小的微电子机械系统——MEMS。MEMS技术是集成电路微细加工技术,它将驱动器、传动装置、传感器、控制器、电源集成于几立方毫米的多晶硅片上,因而能获得机电一体化的微型机械。一些MEMS的雏形已在美国、日本、德国获得广泛应用。例如,一种直径只有头发丝粗细的自动检测传感器,已经安装在数百万辆小汽车里,当它感到冲击来临时,就会让空气包自动张开,保护司机和乘客。

科学家发现,微型机械的可靠性和结实程度非常惊人。美国的贝尔实验室将一辆微型机械震动了20亿次,根本没有损坏它一丝一毫,因为它实在太轻,就像把纸屑往地上摔一样不会受损。

微型机器神奇的前景,引起了科学家的高度重视和浓厚兴趣,于是一门新兴学科——微机械学也就应运而生。

1991年10月,日本投资1.7亿美元研制出一种微型潜艇状胶囊,内装袖珍机器人。胶囊的直径仅8.5毫米,像艘小潜艇,若被吞进胃中,它能观察和分析胃部情况,医务人员便可通过遥控指挥,操纵胶囊内的电脑程序进行工作,遇到病灶还可以进行治疗,完成治疗任务后,便随粪便排出,对人体丝毫无损。

日本生产的另外一种微型导管,直径仅5毫米,尾部有摄影机和激光机,管内装有机器人。管子可以从皮肤插进血管,也可以插入胆囊或胰脏。机器人进入人体后,可以通过它的摄影机,把人体内的状况清晰地显示在电视屏幕上,供医生作出正确诊断;体内的机器人也可以直接用于治疗。

日本东京大学工学部的肥健纯教授等人,研究出可以进入人脑进行手术的机器人。实际上这是一支小小的针,针上装有小型激光手术刀和能吸收组织的装置。手术时,通过观看X线和CT成像的合成立体头部图像,确定手术的部位以及进针的角度和深度,针进到合适位置,就在计算机的控制下开始手术。这台设备1994年已开始临床应用。

为了确保手术安全,美国眼外科医生查尔斯与一实验室合作,于1996年研制出一个防止手术时手颤抖的机械系统,设计出代替人手动作的机器人。当医生移动操纵杆1厘米时,机械手术刀则只移动1毫米,使得手术动作细微精确,还可避免意外事故的发生。查尔斯当时预计,这种手术刀在两年内可望投放市场。

美国明尼苏达大学的波拉研制的一个装置,能在血管中行走,能在人体血液中输液,还可以连续地在血液中监视糖尿病人的葡萄糖浓度,并将胰岛素输送给患者。

在匹兹堡的卡内塞基梅隆大学,有人发明了一个微叶轮,它可应用于动脉粥样硬化患者体内。它的叶轮刀片比头发丝还细,被放置在人体血液中时,血液一流动,叶轮就旋转。

能进入人体的各种袖珍机器人,已经微小到匪夷所思的程度;它们在医学上所起的作用,是半个世纪以前的人所无法想象的。

医用机器人的基本种类

医用机器人种类很多,按照其用途不同,有临床医疗用机器人、护理机器人、医用教学机器人和为残疾人服务机器人等。

运送药品

运送药品机器人可代替护士送饭、送病例和化验单等,较为著名的有美国TRC公司的Help Mate机器人。

移动病人

移动病人机器人主要帮助护士移动或运送瘫痪、和行动不便的病人,如英国的PAM机器人;

临床医疗

临床医疗用机器人包括外科手术机器人和诊断与治疗机器人,可以进行精确的外科手术或诊断,如日本的WAPRU-4胸部肿瘤诊断机器人;美国科学家正在研发一种手术机器人 “达·芬奇系统”,这种手术机器人得到了美国食品和药物管理局认证。它拥有4只机械触手。在医生操纵下,“达·芬奇系统”精确完成心脏瓣膜修复手术和癌变组织切除手术。美国国家航空和航天局计划将在其水下实验室和航天飞机上进行医用机器人操作实验。届时,医生能在地面上的电脑前就可以操纵水下和天外的手术。

美国医用机器人还将被应用于军事领域。2005年,美国军方投资1200万美元研究“战地外伤处理系统”。这套机器人装置被安放在坦克和装甲车辆中,战时通过医生从总部传来的指令,机器人可以对伤者进行简单手术,稳定其伤情等待救援。

为残疾人服务的机器人

为残疾人服务的机器人又叫康复机器人,可以帮助残疾人恢复独立生活能力,如美国的Prab Command系统。

护理机器人

英国科学家正在研发一种护理机器人,能用来分担护理人员繁重琐碎的护理工作。新研制的护理机器人将帮助医护人员确认病人的身份,并准确无误地分发所需药品。将来,护理机器人还可以检查病人体温、清理病房,甚至通过视频传输帮助医生及时了解病人病情。

医用教学机器人

医用教学机器人是理想的教具。美国医护人员目前使用一部名为“诺埃尔”的教学机器人,它可以模拟即将生产的孕妇,甚至还可以说话和尖叫。通过模拟真实接生,有助于提高妇产科医护人员手术配合和临场反应。

为什么微型医用机器人只有2~4个手指?

为什么微型医用机器人只有二到四个手指头因为一般的正常的情况下就可以用这个四个手指头就可以做事情大小指头指几乎不做用影子合计人

微型机器人是怎样的?

微型机器人可分为厘米、毫米和微米尺寸机器人,有一定智能,可在微空间进行可控操作或采集信息,其最突出的优点是能执行常人无法完成的任务,而且可批量、廉价制造。美国研制的一种可探测核生化战剂的微型机器人,只有几毫米大小。还有一种构想中的“黄蜂”微型机器人,只有几十毫克重,可携带某种极小弹头,能喷射出腐蚀液或导电液,攻击敌方装备的关键电子部件。