一、tanx的导数是多少?
tanx的导数:sec²x
求导的定义:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。
(tanx)'=1/cos²x=sec²x=1+tan²x。
基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
二、TanX的导数是什么?
TanX的导数1+tan²x。
(tanx)'
=1/cos²x
=sec²x
=1+tan²x
tanx求导的结果是sec²x,可把tanx化为sinx/cosx进行推导。
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
三、tanx的导数是什么?
tanx的导数:(secx)^2
解答过程如下,用商法则:
(f/g)'=(f'g-g'f)/g^2
[sinx/cosx]'
=[(sinx)'cosx-sinx(cosx)']/(cosx)^2
=[cosx*cosx+sinx*sinx]/(cosx)^2
=1/(cosx)^2
=(secx)^2
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
四、tanx的导数等于什么
(tanx)'= 1/cosx=secx=1+tanx。由基本函数的和、差、积、商或相专互复合构成的属函数的导函数则可以通过函数的求导法则来推导。 扩展资料 tanx的导数:secx。求导的`定义:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。