一、怎么求逆矩阵

若n阶矩阵A可逆,方法如下图:

使用此方法的时,首先要判断矩阵A是否可逆,只需求行列式不等于0就可逆

逆矩阵是设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得:AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。单位矩阵的逆矩阵是它本身:AB=BA=E,则A=B-1;B=A-1。

相关性质:A与B的地位是平等的,故A、B两矩阵互为逆矩阵,也称A是B的逆矩阵;零矩阵是不可逆的,即取不到B,使OB=BO=E;如果A可逆,那么A的逆矩阵是唯一的;单位矩阵E是可逆的,即E=E-1。

回答于 2022-05-05

二、求逆矩阵方法

1、初等变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵

对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。

如求

的逆矩阵A-1。

故A可逆并且,由右一半可得逆矩阵A-1=

2、伴随矩阵法

如果矩阵

可逆,则

注意:

中元素的排列特点是的第k列元素是A的第k行元素的代数余子式。要求得

即为求解

的余因子矩阵的转置矩阵。A的伴随矩阵为

,其中Aij=(-1)i+jMij称为aij的代数余子式。

扩展资料:

可逆矩阵的性质定理

1、可逆矩阵一定是方阵。

2、如果矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

参考资料:百度百科-逆矩阵

三、逆矩阵怎么求?

逆矩阵的求法主要有以下几种:

其一是利用定义求逆矩阵。

定义:设A、B都是n阶方阵,如果存在n阶层方阵B使得AB=BA=E。则称A为可逆矩阵,而称B为A的逆矩阵。下面举例说明这种方法的应用:

其二是初等变换法

求元素为具体数字的矩阵的逆矩阵,常用初等变换法。如果A可逆,则A通过初等变换,化为单位矩阵I,即存在矩阵P1、P2、......Ps使得

(1)P1P2.......PsA=I,用A的负一次方右乘上式两端,的:

(2)P1P2.....PsI=A的负一次方。

比较(1)(2)两式,可以看到当A通过初等变换华为单位矩阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵A的负一次方。这就是初等变换法在求逆矩阵中的应用。它是实际应用中比较简单的一种方法,需要注意的是,在作初等变换时只允许作行初等变换。同样,只作列初等变换也可以求逆矩阵。具体应用如下所示:

其三是伴随阵法

以上是求逆矩阵较为常用的三种方法,具体使用哪种方法,根据题目的要求而定。

四、求逆矩阵的三种方法

求逆矩阵的3种方法为:伴随矩阵法、初等变换法和待定系数法。

1、伴随矩阵,是一个由一个代数余子式组成的矩阵,该矩阵有一个矩阵组成。

2、待定系数法,顾名思义就是对未知数进行求解。用一个新的包含未定因子的多项式来表达多项式,从而获得一个恒等式。接着,利用恒等式的特性,推导出一类系数必须满足的方程或方程,再由方程组或方程组得到待确定的系数,或确定各系数之间的对应关系,称为待定系数法。

3、矩阵的初等变换可以看成是一个方程组的方程之间两两消去的过程。从初中解二、三、四元一次方程的过程来看,消去的过程对方程的解没有任何影响,事实上,消去前和后的方程组都是等效的,而且它们之间的关系也是一样的。

逆矩阵

设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。A与B的地位是平等的,故A、B两矩阵互为逆矩阵,也称A是B的逆矩阵。零矩阵是不可逆的,即取不到B,使OB=BO=E。

若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。

以上内容参考:百度百科——逆矩阵

五、求逆矩阵的简便方法

求逆矩阵的简便方法如下:

1、待定系数法。

2、伴随矩阵求逆矩阵。

3、初等变换求逆矩阵。

待定系数法,一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。

伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。我们先求出伴随矩阵A*=-3,-2,1 , 1。接下来,求出矩阵A的行列式|A|=1*(-3) - (-1)* 2=-3+2=-1。从而逆矩阵A⁻¹=A*/|A| =A*/(-1)=-A*=3, 2,-1,-1。

初等变换求逆矩阵首先,写出增广矩阵A|E,即矩阵A右侧放置一个同阶的单位矩阵,得到一个新矩阵。

1,2,1,0,-1,-3,0,1。然后进行初等行变换。依次进行第1行加到第2行,得到1,2,1,0,0,-1,1,1。第2行×2加到第1行,得到1,0,3,2,0,-1,1,1。第2行×(-1),得到1,0,3,2,0,1,-1,-1。