一、数列发散是什么意思

设有数列{an},a是任意实数,若存在一个ε>0,对于任意的正整数N,总存在正整数n>N,有 |an−a|≥ε

在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。

扩展资料

收敛级数映射到它的和的函数是线性的,从而根据哈恩-巴拿赫定理可以推出,这个函数能扩张成可和任意部分和有界的级数的可和法,并且也由于这种算子的存在性证明诉诸于选择公理或它的等价形式,例如佐恩引理,所以它们还都是非构造的。

发散级数这一分支,作为分析学的领域,本质上关心的是明确而且自然的技巧,例如阿贝尔可和法、切萨罗可和法、波莱尔可和法以及相关对象。维纳陶伯型定理的出现标志着这一分支步入了新的阶段,它引出了傅里叶分析中巴拿赫代数与可和法间出乎意料的联系。

发散级数的求和作为数值技巧也与插值法和序列变换相关,这类技巧的例子有:帕德近似、Levin类序列变换以及与量子力学中高阶微扰论的重整化技巧相关的依序映射。

参考资料来源:百度百科-发散

二、“数列发散”是什么意思?

发散就是不收敛,没有极限的意思

比如1,1/2,1/4,1/8……这个数列就收敛,极限为0

而1,-1,1,-1,1,-1……,这个数列就不收敛,没有极限,我们说他是发散的。

三、发散数列是什么?

发散数列就是当n趋近正无穷时,an总是不能接近某一个具体的数值,换句话说就是an没有极限

这样的数列就是发散数列。

如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数。

集合中的元素是互异的,而数列中的项可以是相同的。集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。

扩展资料:

数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

给定收敛到s的收敛级数a,倘若任意置换级数a的项得到级数a′后,a′收敛也总是收敛到s,则称级数a是绝对收敛的。

在这个定义之下可以证明,一个级数收敛当且仅当取它每一项绝对值后得到的新级数在经典意义下收敛。有些地方会将后者作为绝对收敛的定义,但由于不涉及绝对值的概念,所以前者的定义更有一般性。

参考资料来源:百度百科——数列

参考资料来源:百度百科——发散

四、发散数列是什么意思?

发散数列就是当n趋近正无穷时,an总是不能接近某一个具体的数值,换句话说就是an没有极限

这样的数列就是发散数列。

如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数。

集合中的元素是互异的,而数列中的项可以是相同的。集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。

扩展资料:

数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

给定收敛到s的收敛级数a,倘若任意置换级数a的项得到级数a′后,a′收敛也总是收敛到s,则称级数a是绝对收敛的。

在这个定义之下可以证明,一个级数收敛当且仅当取它每一项绝对值后得到的新级数在经典意义下收敛。有些地方会将后者作为绝对收敛的定义,但由于不涉及绝对值的概念,所以前者的定义更有一般性。

参考资料来源:百度百科——数列

参考资料来源:百度百科——发散

五、什么是发散数列

发散数列就是当n趋近正无穷时,an总是不能接近某一个具体的数值,换句话说就是an没有极限

这样的数列就是发散数列