一、什么是二进制、十进制?

十进制数用0、1、2、3.........9 , 这十个数来表示十进制(计数法)是以10为基础数字系统, 是在世界上应用最广泛的进位制。

即满十进一,满二十进二,以此类推;按权展开,第一位权为10^0,第二位10^1……以此类推,第N位10^(N-1),该数的数值等于每位位的数值*该位对应的权值之和。

世界上绝大多数古文明都是使用的十进制,古中国,古印度,古希腊等。当然也有例外,例如苏美尔人使用十二进制,玛雅人使用二十进制,古巴比伦人使用六十进制。

扩展资料:

一般来说,数源于对物体的累计与计算,一个一个的数,就产生了自然数。今天,国际上最常使用的计数方法是十进制,它已经成为人们生活不可缺少的一部分。

十进制是古印度人发明的。从公元前2500到公元前1750年的哈拉帕文化时期开始,古印度人就采用十进制计数法。他们先是发明了1—9这九个数字符号和定位计数法,后又提出了零的理论和作为演算基点的十进制。

印度人之所以按“逢十进一”的规则进行运算,大概是因为当时他们用10个手指辅助计数。有了十进制,所需要的计数的单数仅为0,1,2,3……9。中亚许多民族都逐渐采用了这个简便的计数方法。

后来,阿拉伯人征服印度,对印度的10个数字加以修改,传到了欧洲,印度数字及其计算方式就逐渐演变成为现今世界通用的阿拉伯计数法了。

我国对计数方法的研究和使用也有悠久的历史。从考古出土的陶片来看,早在五六千年前的原始社会,我国先民就已经掌握了30以内的自然数。

商代中期陶片和甲骨文中已经出现13个数字:分别是一、二、三、四、五、六、七、八、九、十、百、千、万。

在长期的社会实践中,人们发现不同位置的相邻数字非常容易混淆,于是创造了纵式和横式的计算方式。大约在公元前8世纪到公元前3世纪期间,也就是春秋战国时代,我国出现了严格的十进位制。这是中国古代数学的一项伟大创造。一直到15世纪中叶,珠算成为主要的计算工具。

参考资料来源:百度百科—十进制

二、什么是二进制和十进制

十进制跟二进制的区别:

1、基数不同

前者满10进1,后者满2进1;

2、有效字符不同

前者有效字符有10个:0,1,2,3,4,5,5,6,7,8,9;后者有效字符有2个:0,1

3、用途上

计算机只能用二进制存储和运算,在设计程序时二进制不容易读,所以可以采用八进制和十六进制来帮助编程,计算机再翻译成二进制数来用。计算机编程比较常用的是:十进制、二进制、八进制、十六进制,其中八进制也用得比较少。

二进制转十进制

要从右到左用二进制的每个数去乘以2的相应次方,小数点后则是从左往右

例如:二进制数1101.01转化成十进制

1101.01(2)=1*20+0*21+1*22+1*23 +0*2-1+1*2-2=1+0+4+8+0+0.25=13.25(10)

所以总结起来通用公式为:

abcd.efg(2)=d*20+c*21+b*22+a*23+e*2-1+f*2-2+g*2-3(10)

十进制整数转换为二进制整数

十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为小于1时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

十进制小数转换为二进制小数

十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,此时0或1为二进制的最后一位。或者达到所要求的精度为止。

然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。