一、圆的定义和圆有那些性质

一、圆的定义

(1)

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一端点A随之旋转所形成的图形叫做圆,点O为圆心,线段OA为半径;

(2)

圆是到定点的距离等于定长的点的集合。

(3)

圆既是中心对称图形,又是轴对称图形。

二.点与圆的位置关系

设圆的半径为r,点到圆心的距离为d,则

点在圆外

d

>

r

点在圆上

d

=

r

点在圆内

d

<

r

三、与圆有关的概念

弦:连接圆上任意两点的线段。直径是圆内最长的弦。

弧:圆上任意两点间的部分。(分优弧和劣弧)

弓形:由弦及其所对的弧组成的图形。

等弧:在同圆或等圆中,能够互相重合的弧。

弦心距:圆心到弦的距离。

圆心角:顶点在圆心的角。

圆周角:顶点在圆上,并且两边都和圆相交的角。

四、有关的定理

1.垂径定理及推论:垂直于弦的直径一平分这条弦,并且平分弦所对的两条弧.

推论1:(1)平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧.

(2)弦的垂直平分线过圆心,平分弧所对的弧.

(3)平分弦所对的一弧的直径垂直平分弦,且平分弦所对的另一条弧.

如果你认可我的回答,请及时点击【采纳为满意回答】按钮~

~手机提问者在客户端右上角评价点【满意】即可。

~你的采纳是我前进的动力

~O(∩_∩)O,记得好评和采纳,互相帮助

二、圆的定义及特征是什么?

圆是圆柱横断面上外围点排列一周的封闭曲线;而正6x2ⁿ边形是棱柱横断面上外围点排列一周的封闭折线。。人们俗称“削的没有旋的圆”其实意义就是说:在同一个平面上端点与端点围绕定点旋转排列一周的点为圆。

如果采用正6x2ⁿ边形无限倍边能成“圆”,那么这样的“圆”与圆的定义还有意义吗?

三、圆的定义及性质

定义:同一个平面内,其他所有到定点的距离相等的点的集合就是圆。

性质:圆的周长=2πr

其中r是圆的半径。

圆的面积=πr²

四、什么叫圆的定义???

圆的定义:

第一定义:

在同一平面内到定点的距离等于定长的点的集合叫做圆(circle)。这个定点叫做圆的圆心。

圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆。

圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。

第二定义:

平面内一动点到两定点的距离平方之比,等于一个不为1的常数,则此动点的轨迹是圆。

圆的定义及特征(圆的基本概念及性质)

证明:点坐标为(x1,y1)与(x2,y2),动点为(x,y),距离比为k,由两点距离公式。满足方程(x-x1)2 + (y-y1)2 = k2×[ (x-x2)2 + (y-y2)2] 当k不为1时,整理得到一个圆的方程。

几何法:假设定点为A,B,动点为P,满足|PA|/|PB| = k(k≠1),过P点作角APB的内、外角平分线,交AB与AB的延长线于C,D两点由角平分线性质,角CPD=90°。由角平分线定理:PA/PB = AC/BC = AD/BD =k,注意到唯一k确定了C和D的位置,C在线段AB内,D在AB延长线上,对于所有的P,P在以CD为直径的圆上。

扩展资料:

圆的性质:

(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

(2)有关圆周角和圆心角的性质和定理

① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。

即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

参考资料:百度百科-圆

五、圆的定义是什么?

〖圆的定义〗

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

〖圆的相关量〗

圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值。

圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

〖圆和圆的相关量字母表示方法〗

圆—⊙ 半径—r 弧—⌒ 直径—d

扇形弧长/圆锥母线—l 周长—C 面积—S

〖圆和其他图形的位置关系〗

圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

【圆的平面几何性质和定理】

〖有关圆的基本性质与定理〗

圆的确定:不在同一直线上的三个点确定一个圆。

圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

〖有关圆周角和圆心角的性质和定理〗

在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

一条弧所对的圆周角等于它所对的圆心角的一半。

直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

〖有关外接圆和内切圆的性质和定理〗

一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

〖有关切线的性质和定理〗

圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

切线的长定理:从圆外一点到圆的两条切线的长相等。

〖有关圆的计算公式〗

1.圆的周长C=2πr=πd 2.圆的面积S=πr² 3.扇形弧长l=nπr/180

4.扇形面积S=nπr²/360=rl/2 5.圆锥侧面积S=πrl